磁共振弥散张量成像联合纤维束示踪成像对前列腺根治术前前列腺周围神经三维显像的初步探索
陈科1,2, 贾卓2, 吕香君2, 敖砾言1,2, 任昶澔1,2, 许云来1,2, 张晓晶3, 王海屹3, 王保军2, 马鑫2, 张旭2,*
1解放军医学院,北京 100853
2中国人民解放军总医院第三医学中心泌尿外科医学部,北京 100039
3中国人民解放军总医院第一医学中心放射诊断科, 北京 100853
通信作者:张旭,xzhang301@163.com
摘要

目的:评估盆腔磁共振弥散张量成像(DTI)联合纤维束示踪成像(DTT)与T2WI图像、三维器官融合重建对于前列腺周围神经显像的效果,探讨对行前列腺根治性切除术患者前列腺周围神经保护的价值。方法:纳入15例行盆腔磁共振平扫及增强扫描(包括T1WI、T2WI、DWI、DTI、T1 LAVA Flex Dynamic phase序列),并行前列腺穿刺活检明确病理为前列腺癌的患者,通过DTI联合DTT技术,对前列腺周围神经进行追踪显像,并与T2WI图像、三维重建器官进行融合,显示前列腺周围神经的走行和与盆腔脏器的关系。比较患者术前和术后尿控功能及性功能的差异。结果:15例前列腺癌患者行前列腺周围神经三维追踪显像,其中4例因原始图像质量不佳予以排除,其余11例图像质量优良,清晰追踪并显示前列腺周围神经走行和与盆腔脏器关系。患者尿控功能在术后6月基本恢复术前水平,差异无统计学意义(P=0.165),术后6月性功能相比术前较差,差异具有统计学意义(P=0.028)。结论:盆腔磁共振DTI联合DTT技术可以清晰追踪显示前列腺周围神经走行,通过融合T2WI图像、三维器官重建图像,显示神经与盆腔脏器的关系,对于术中前列腺周围神经的保护具有一定应用价值。

关键词: 前列腺肿瘤; 弥散磁共振成像; 弥散张量成像
Three-dimensional visualization of the periprostatic nerve fibers using magnetic resonance diffusion tensor imaging with diffusion tensor tractography before radical prostatectomy: a preliminary study
Chen Ke1,2, Jia Zhuo2, Lü Xiangjun2, Ao Liyan1,2, Ren Changhao1,2, Xu Yunlai1,2, Zhang Xiaojing3, Wang Haiyi3, Wang Baojun2, Ma Xin2, Zhang Xu2,*
1Medical School of Chinese PLA,Beijing 100853,China
2Department of Urology, the Third Medical Center,Chinese PLA General Hospital,Beijing 100039,China
3Department of Radiology,the First Medical Center, Chinese PLA General Hospital,Beijing 100853,China
Corresponding author: Zhang Xu,xzhang301@163.com
Abstract

Objective: To evaluate the effect of three-dimensional reconstruction on periprostatic nerve fibers imaging using pelvic magnetic resonance diffusion tensor imaging (DTI) with diffusion tensor tractography (DTT) fused with T2WI images and organ reconstruction images, and to investigate the value of periprostatic nerve protection in patients undergoing radical prostatectomy.Methods: A total of 15 patients with pelvic MRI plain and enhanced scans (including T1WI, T2WI, DWI, DTI, T1 LAVA Flex dynamic phase sequences) and biopsy-proven prostate cancer were included, and the periprostatic nerve was traced and visualized by DTI with DTT technique, and images were fused with T2WI images and 3D reconstruction images of the organ to show the path of the periprostatic nerve fibers and its relationship with the pelvic organs. The differences in urination and erectile function before and after operation were compared.Results: Of the 15 patients with prostate cancer who underwent three-dimensional periprostatic nerve fibers tracing reconstruction, 4 patients were excluded due to poor quality of the original images, while the remaining 11 patients had excellent image quality and clearly traced and showed the periprostatic nerve path and relationship with the pelvic organs. At 6th month after operation, the urination function of the patients basically recovered to the preoperative level, and the difference was not statistically significant ( P=0.165). The erectile function of patients at 6th month after operation was worse, and the difference was statistically significant ( P=0.028).Conclusion: The pelvic MRI DTI combined with DTT technique can clearly track the periprostatic nerve and show the relationship between the nerve fibers and pelvic organs by fusing T2WI images and 3D organ reconstruction images, which is valuable for the intraoperative protection of the periprostatic nerve.

Keyword: prostate tumors; diffusion magnetic resonance imaging; diffusion tensor tractography

根治性前列腺切除术(radical prostatectomy, RP)是局限性前列腺癌的主要治疗方式, 然而术后勃起功能障碍、尿失禁、排便功能障碍等并发症[1, 2, 3], 严重影响患者术后生活质量。这与术中损伤前列腺周围神经密切相关, 前列腺周围神经由盆丛发出, 呈网状分布于前列腺周围, 其直径细小, 术中肉眼难以辨别[4]。临床使用的常规磁共振横断面T2加权像(T2 weighted image, T2WI)对于前列腺周围神经的评估仍具有较大的局限性。磁共振弥散张量成像(magnetic resonance diffusion tensor imaging, DTI)联合三维纤维束示踪成像(diffusion tensor tractography, DTT)技术可追踪神经纤维束的走行, 广泛用于神经系统疾病的研究。本研究通过DTI联合DTT成像, 与T2WI图像、三维器官融合重建, 评估对于前列腺周围神经显像的效果, 探讨对行RP患者前列腺周围神经的保护价值。

1 资料与方法
1.1 患者资料

回顾性分析我院2021年2月至8月临床怀疑前列腺癌, 行盆腔磁共振平扫及增强扫描(包括T1WI、T2WI、DWI、DTI、T1 LAVA-Flex 动态增强序列), 并行前列腺穿刺活检明确为前列腺癌的15例患者, 排除原始影像成像质量不佳的4例患者。所有患者在术前均完成国际勃起功能评分量表(international index of erectile function-5, IIEF-5)、临床实践用扩展版前列腺癌综合指数量表(expanded prostate cancer index composite for clinical practice, EPIC-CP)、Rigiscan阴茎硬度测量。

1.2 检查方法

采用美国GE Discovery 750 3.0T MR扫描仪和8通道心脏相控阵Cardiac线圈。患者检查前禁食4~6h, 适度充盈膀胱, 取仰卧位, 扫描中心位于耻骨联合上缘水平, 扫描范围为全盆腔。常规多参数 MRI检查:横断面、冠状面、矢状面薄层高分辨率T2WI扫描, DWI序列、DTI序列、T1 LAVA-Flex 动态增强序列。

1.3 影像分析

所有影像分析及重建使用软件3D slicer 4.11, 基于患者多参数MRI影像资料进行纤维束追踪重建后处理。所有患者均进行了完整的纤维束追踪重建, 在轴位T2WI图像上分别对前列腺底部、中部、尖部水平勾画感兴趣区域(region of interest, ROI), ROI内侧为前列腺包膜, 外侧为闭孔内肌, 通过纤维束示踪成像技术对前列腺周围盆腔神经进行追踪显像。纤维束追踪成像采用以下重建参数:角度阈值为45° , 各向异性分数(fraction anisotropy, FA)阈值为0.15, 最短纤维长度阈值为5 mm。并对盆腔脏器如膀胱、前列腺、精囊、直肠进行勾画与三维器官重建, 通过融合T2WI图像、前列腺周围神经追踪纤维束及器官重建图像, 显示并评估盆腔脏器与前列腺周围神经的关系。

1.4 统计学方法

使用SPSS 26.0统计软件处理数据。计量资料符合正态分布用均数± 标准差 ( $\bar{x}$± s) 表示。不符合正态分布的计量资料以中位数(M)和四分位数间距(Q1, Q3)表示, 组间比较采用Wilco秩和检验。P< 0.05为差异有统计学意义。

2 结果
2.1 患者资料特征

本研究纳入前列腺癌患者15例, 排除4例患者, 共11例。年龄(62.0± 4.7)岁, 身高(169.8± 6.1)cm, BMI (24.1± 1.7)kg/m² , 初诊血清总PSA为11.8(6.8, 21.9)μ g/L, 前列腺体积30.1(24.9, 39.5)ml, 术前IEFF-5评分为19.0(5.0, 22.0)分, EPIC-CP评分为4.0(3.0, 22.0)分, 术前穿刺病理Gleason评分7分6例, 8分3例, ≥ 9分2例,

2.2 影像重建结果

15例患者均行前列腺周围神经三维重建图像, 排除原始影像成像质量不佳的4例患者, 11例图像质量优良, 清晰追踪并显示前列腺周围神经走行和与盆腔脏器的关系。可见前列腺周围神经纤维束弥漫分布于前列腺包膜表面, 大致方向沿前列腺底部向尖部下行。神经纤维束密度由底部向尖部走行过程中逐渐变稀疏, 在膀胱颈部至前列腺底部连接区域纤维束密度相对较高, 且前列腺后外侧纤维束密度较前侧更高。图1~图5为同一右侧移行带及外周带前列腺癌患者。

图1 横断面前列腺磁共振图像
A: T2WI; B:DTI

图2 横断面T2WI图像
A:前列腺底部; B: 中部及尖部勾画ROI; C:红色区域为右侧ROI, 蓝色区域为左侧ROI

图3 前列腺周围神经DTI联合DTT纤维束追踪成像融合横断面T2WI图像

图4 三维器官重建图像
橘色:膀胱; 蓝色:精囊; 红色:前列腺; 绿色:直肠

图5 前列腺周围神经纤维束融合横断面T2WI图像、三维器官重建图像

2.3 围手术期情况和随访结果

11例患者均未发生严重围手术期并发症, 其中1例采用双侧筋膜内技术, 2例采用单侧筋膜内技术, 8例采用双侧筋膜外技术。患者尿控功能在术后6月基本恢复到术前水平, 差异无统计学意义(P=0.165), 术后6月性功能相比术前较差, 差异具有统计学意义(P=0.028), 见表1

表1 患者术前后尿控及性功能评分比较(分, n=11)
3 讨论

随着保留前列腺周围神经的RP的广泛应用, 前列腺癌患者术后尿失禁及勃起功能障碍发生的风险显著降低, 但仍有42%~89%保留单侧神经及18%~32%保留双侧神经患者在术后出现尿失禁及勃起功能障碍, 严重影响患者术后生活质量[5, 6, 7]。保留神经的术后的功能保留效果与前列腺周围神经保留数量的多少相关[8, 9], 但前列腺周围神经血管束的单个神经较为细小, 平均直径约0.20 mm[10, 11], 术中肉眼难以分辨。病理学及解剖学研究证明前列腺周围神经分布复杂, 大多数前列腺周围神经位于前列腺后外侧, 少数神经分布于前列腺的前外侧和背侧[12, 13]。临床上常用横断面T2WI评估肿瘤有无侵犯前列腺周围神经, 但其仍具有较大局限性[14]。DTI及DTT是一种基于生物组织结构的各向扩散异性, 对纤维束进行追踪并可视化的磁共振成像技术, 常用于分析和可视化中枢神经系统中的神经束以及部分周围神经系统[15, 16, 17]

本研究通过DTI联合DTT技术追踪前列腺周围神经及其上下游神经, 并进一步通过器官重建, 三维立体地显示出前列腺周围神经走行及其与盆腔脏器间的关系, 表明该技术在术前的应用是可行的。11例患者尿控功能在术后6月基本恢复到术前水平, 差异无统计学意义(P=0.165), 术后6月性功能相比术前较差, 差异具有统计学意义(P=0.028), 但由于仅3例采用保留神经技术, 对于其术后勃起功能的评估仍具有局限性。Siracusano等[18]研究显示通过DTT重建前列腺周围神经血管束, 能获得患者重建纤维束的数量、平均长度和平均FA值等定量数据, 并发现纤维束的数量在前列腺癌术后显著减少, FA值的水平与术后勃起功能障碍呈负相关。准确的盆腔手术立体定向导航可提高手术质量和安全性[19, 20], DTT有望用于术中神经立体定向导航。但与神经外科和骨科手术相比, 盆腔立体定向导航面临更多挑战[19], 相较于大脑组织成分, 盆腔脏器组织更复杂, 组织形变较大, 从而使重建算法更加复杂。

DTT技术的局限性主要在于追踪重建的纤维束并不代表实际的神经束, 线性非神经结构如肌肉组织、动静脉也可能显示为同样的纤维束。常见的MRI造影剂如钆螯合物, 可以帮助区分血管和神经。使用直肠内线圈评估, 也能提供更好的局部信号, 减少噪声和前列腺周围组织失真[21], 从而使成像效果更佳, 缺点是患者不适, 同时有直肠损伤、出血和直肠炎等并发症风险[22]。本研究的局限性主要在于患者例数较少, 缺乏相应术后影像学检查及组织病理学对照研究, 今后研究中还需扩大样本量验证其术后功能恢复的价值。

综上所述, 本研究结果证实利用DTI联合DTT进行前列腺周围神经追踪成像是可行的, 通过与T2WI图像及三维重建器官融合, 可以为前列腺癌患者术前提供宝贵的影像学补充信息, 为保留神经的RP手术策略的个体化制定及术中操作提供一定的指导意义, 有望应用于术中神经立体定向导航。

参考文献
[1] Miller DC, Sand a MG, Dunn RL, et al. Long-term outcomes among localized prostate cancer survivors: health-related quality-of-life changes after radical prostatectomy, external radiation, and brachytherapy[J]. J Clin Oncol, 2005, 23(12): 2772-2780. [本文引用:1]
[2] Ficarra V, Novara G, Rosen RC, et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy[J]. Eur Urol, 2012, 62(3): 405-417. [本文引用:1]
[3] Ficarra V, Novara G, Ahlering TE, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy[J]. Eur Urol, 2012, 62(3): 418-430. [本文引用:1]
[4] Walz J, Burnett AL, Costello AJ, et al. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in cand idates for radical prostatectomy[J]. Eur Urol, 2010, 57(2): 179-192. [本文引用:1]
[5] Takenaka A, Leung RA, Fujisawa M, et al. Anatomy of autonomic nerve component in the male pelvis: the new concept from a perspective for robotic nerve sparing radical prostatectomy[J]. World J Urol, 2006, 24(2): 136-143. [本文引用:1]
[6] Chabert CC, Merrilees DA, Neill MG, et al. Curtain dissection of the lateral prostatic fascia and potency after laparoscopic radical prostatectomy: a veil of mystery[J]. BJU Int, 2008, 101(10): 1285-1288. [本文引用:1]
[7] Vora A A, Marchalik D, Kowalczyk KJ, et al. Robotic-assisted prostatectomy and open radical retropubic prostatectomy for locally-advanced prostate cancer: multi-institution comparison of oncologic outcomes[J]. Prostate Int, 2013, 1(1): 31-36. [本文引用:1]
[8] Hull GW, Rabbani F, Abbas F, et al. Cancer control with radical prostatectomy alone in 1, 000 consecutive patients[J]. J Urol, 2002, 167(2 Pt 1): 528-534. [本文引用:1]
[9] Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data system version 2. 1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. [本文引用:1]
[10] Sievert KD, Hennenlotter J, Laible I, et al. The periprostatic autonomic nerves--bundle or layer?[J]. Eur Urol, 2008, 54(5): 1109-16. [本文引用:1]
[11] Sung W, Lee S, Park YK, et al. Neuroanatomical study of periprostatic nerve distributions using human cadaver prostate[J]. J Korean Med Sci, 2010, 25(4): 608-612. [本文引用:1]
[12] Ganzer R, Blana A, Gaumann A, et al. Topographical anatomy of periprostatic and capsular nerves: quantification and computerised planimetry[J]. Eur Urol, 2008, 54(2): 353-360. [本文引用:1]
[13] Ganzer R, Blana A, Stolzenburg JU, et al. Nerve quantification and computerized planimetry to evaluate periprostatic nerve distribution-does size matter?[J]. Urology, 2009, 74(2): 398-403. [本文引用:1]
[14] Duvnjak P, Schulman AA, Holtz JN, et al. Multiparametric prostate MR imaging: impact on clinical staging and decision making[J]. Urol Clin North Am, 2018, 45(3): 455-466. [本文引用:1]
[15] Okada T, Miki Y, Fushimi Y, et al. Diffusion-tensor fiber tractography: intraindividual comparison of 3. 0-T and 1. 5-T MR imaging[J]. Radiology, 2006, 238(2): 668-678. [本文引用:1]
[16] Mcclure TD, Margolis DJA, Reiter RE, et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy[J]. Radiology, 2012, 262(3): 874-883. [本文引用:1]
[17] Ahn S, Lee SK. Diffusion tensor imaging: exploring the motor networks and clinical applications[J]. Korean J Radiol, 2011, 12(6): 651-661. [本文引用:1]
[18] Siracusano S, Porcaro AB, Tafuri A, et al. Visualization of peri-prostatic neurovascular fibers before and after radical prostatectomy by means of diffusion tensor imaging (DTI) with clinical correlations: preliminary report[J]. J Robot Surg, 2020, 14(2): 357-363. [本文引用:1]
[19] Wijsmuller AR, Romagnolo LGC, Agnus V, et al. Advances in stereotactic navigation for pelvic surgery[J]. Surg Endosc, 2018, 32(6): 2713-2720. [本文引用:2]
[20] 陈欣然, 王保军, 高宇, . 全息影像技术在机器人根治性前列腺切除术中的应用[J]. 中华泌尿外科杂志, 2021, 42(7): 497-501. [本文引用:1]
[21] Mazaheri Y, Vargas HA, Nyman G, et al. Diffusion-weighted MRI of the prostate at 3. 0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-the impact of SNR on ADC measurement[J]. Eur J Radiol, 2013, 82(10): e515-e520. [本文引用:1]
[22] Lee SH, Park KK, Choi KH, et al. Is endorectal coil necessary for the staging of clinically localized prostate cancer? Comparison of non-endorectal versus endorectal MR imagin[J]. World J Urol, 2010, 28(6): 667-672. [本文引用:1]