Abstract:With the increasing trend of incidence of urologic neoplasms these years, radiomics, as a research method to explore the potential biological behavior of tumors, has drawn more attention due to its non-invasive, repetitive and comprehensive analysis of tumor heterogeneity and has been applied to urologic neoplasms progressively. Utilizing the texture analysis and other quantitative methods in fadiomics can extract more lesion information with high throughput, and achieve accurate prediction of the nature of a lesion, ultimately, assisting in making more precise clinical diagnosis, more accurate treatment decisions. The research methods procedures of radiomics, and the progresses of radiomics research in urologic neoplasms have been reviewed in this article.
衣慧灵, 王海屹, 叶慧义. 影像组学在泌尿系统肿瘤中的研究进展[J]. 微创泌尿外科杂志, 2018, 7(5): 351-360.
Yi Huiling, Wang Haiyi, Ye Huiyi. Radiomics research in urologic neoplasms. JOURNAL OF MINIMALLY INVASIVE UROLOGY, 2018, 7(5): 351-360.
[1] Ferlay J, Soerjomataram I, Dikshit R, et al.Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015,136(5):E359-E386. [2] Sun M, Thuret R, Abdollah F, et al.Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Eur Urol, 2011,59(1):135-141. [3] Torre LA, Bray F, Siegel RL, et al.Global cancer statistics, 2012. CA Cancer J Clin, 2015,65(2):87-108. [4] Chen W, Zheng R, Baade PD, et al.Cancer statistics in China, 2015. CA Cancer J Clin, 2016,66(2):115-132. [5] Motzer RJ, Jonasch E, Agarwal N, et al.Kidney Cancer, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2017,15(6):804. [6] Roupret M, Babjuk M, Comperat E, et al.European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur Urol, 2017,60(1):1-15. [7] Powles T, Chowdhury S, Jones R, et al.Sunitinib and other targeted therapies for renal cell carcinoma. Br J Cancer, 2011,104(5):741-745. [8] Teloken PE, Thompson RH, Tickoo SK, et al.Prognostic impact of histological subtype on surgically treated localized renal cell carcinoma. J Urol, 2009,182(5):2132-2136. [9] Aerts HJWL, Velazquez ER, Leijenaar RTH, et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 2014,5(1):4006. [10] Lee G, Lee HY, Ko ES, et al.Radiomics and imaging genomics in precision medicine. Precision and Future Medicine, 2017,1(1):10-31. [11] Gillies RJ, Anderson AR, Gatenby RA, et al.The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol, 2010,65(7):517-521. [12] Lambin P, Rios-Velazquez E, Leijenaar R, et al.Radiomics: extracting more information from medical images using advanced feature analysis. EurJ Cancer, 2012,48(4):441-446. [13] Kumar V, Gu Y, Basu S, et al.Radiomics: the process and the challenges. Magn Reson Imaging, 2012,30(9):1234-1248. [14] Levy MA, Freymann JB, Kirby JS, et al.Informatics methods to enable sharing of quantitative imaging research data. Magn Reson Imaging, 2012,30(9):1249-1256. [15] Li H, Zhu Y, Burnside ES, et al.MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology, 2016,281(2):382-391. [16] Gillies RJ, Kinahan PE, Hricak H.Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016,278(2):563-577. [17] Lubner MG, Smith AD, Sandrasegaran K, et al.CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics, 2017,37(5):1483-1503. [18] El Naqa I, Grigsby P, Apte A, et al.Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit, 2009,42(6):1162-1171. [19] Xu X, Liu Y, Zhang X, et al.Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps. Abdominal radiology (New York), 2017,42(7):1896-1905. [20] Zhao B, Tan Y, Wei-Yann T, et al.Reproducibility of radiomics for deciphering tumor phenotype with imaging. Scientific reports, 2016,6(1):23428-12435. [21] 吴佩琪,刘再毅,何兰,等.影像组学与大数据结合的研究现状.中华放射学杂志,2017,51(7):554-558. [22] Tian J, Dong D, Liu Z, et al.Radiomics in Medical Imaging—Detection, Extraction and Segmentation. Italy: Springer International Publishing, 2018:267-333. [23] Marusyk A, Almendro V, Polyak K.Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer, 2012,12(5):323. [24] Soria F, Shariat SF, Lerner SP, et al.Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC). World J Urol, 2017,35(3):379-387. [25] Clark PE, Agarwal N, Biagioli MC, et al.Bladder cancer: Clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2013,11(4):446. [26] Nailon WH, Redpath AT, Mclaren DB.Texture analysis of 3D bladder cancer CT images for improving radiotherapy planning. 2008,652-625. [27] Zhang GM, Sun H, Shi B, et al.Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdominal radiology (New York), 2017,42(2):561-568. [28] Mammen S,Krishna S,Quon M, et al.Diagnostic Accuracy of Qualitative and Quantitative Computed Tomography Analysis for Diagnosis of Pathological Grade and Stage in Upper Tract Urothelial Cell Carcinoma. J Comput Assist Tomogr, 2018,42(2):204-210. [29] Shi Z, Yang Z, Zhang G, et al.Characterization of texture features of bladder carcinoma and the bladder wall on MRI: initial experience. Acad Radiol, 2013,20(8):930-938. [30] Xu X, Zhang X, Liu Y, et al.Differentiating bladder carcinoma from bladder wall using 3D textural features: an initial study. Medical Imaging 2016: Computer-Aided Diagnosis. International Society for Optics and Photonics, 2016,9785:97851T. [31] Xu X, Zhang X, Tian Q, et al.Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI. International journal of computer assisted radiology and surgery, 2017,12(4):645-656. [32] Inder SM, Smyth L, Davis NF, et al.The Worrying Modern Scenario of Benign Pathology after Nephrectomy for Presumed Renal Cancer. Irish Medical Journal, 2016,109(1):349. [33] Bosetti C, Bertuccio P, Chatenoud L, et al.Trends in mortality from urologic cancers in Europe, 1970-2008. Eur Urol, 2011,60(1):1-15. [34] Lindkvist PC, Winckflyvholm L, Dahl C, et al.High rate of benign histology in radiologically suspect renal lesions. Danish Medical Journal, 2014,61(10):A4932. [35] Xiong YH, Zhang ZL, Li YH, et al.Benign pathological findings in 303 Chinese patients undergoing surgery for presumed localized renal cell carcinoma. Int J Urol, 2010,17(6):517-521. [36] Kim JH, Sun HY, Hwang J, et al.Diagnostic accuracy of contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging of small renal masses in real practice: sensitivity and specificity according to subjective radiologic interpretation. World J Surg Oncol, 2016,14(1):260. [37] 康素海,叶慧义.MRI、B超及超声造影诊断小肾肿瘤的现状与进展.中国医学影像学杂志,2016,24(5):396-400. [38] Lanzman RS, Robson PM, Sun MR, et al.Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology, 2012,265(3):799-808. [39] Lassel EA, Rao R, Schwenke C, et al.Diffusion-weighted imaging of focal renal lesions: a meta-analysis. European radiology, 2014,24(1):241-249. [40] Doganay S, Kocakoc E, Cicekci M, et al.Ability and utility of diffusion-weighted MRI with different b values in the evaluation of benign and malignant renal lesions. Clin Radiol, 2011,66(5):420-425. [41] Thoeny HC, Ross BD.Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging, 2010,32(1):2-16. [42] Hodgdon T, Mcinnes MD, Schieda N, et al.Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images?. Radiology, 2015,276(3):787-796. [43] Yan L, Liu Z, Wang G, et al.Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad Radiol, 2015,22(9):1115-1121. [44] Takahashi N, Takeuchi M, Sasaguri K, et al.CT negative attenuation pixel distribution and texture analysis for detection of fat in small angiomyolipoma on unenhanced CT. Abdominal radiology (New York), 2016,41(6):1142-1151. [45] Takahashi N, Leng S, Kitajima K, et al.Small (< 4 cm) Renal Masses: Differentiation of Angiomyolipoma Without Visible Fat From Renal Cell Carcinoma Using Unenhanced and Contrast-Enhanced CT. AJR Am J Roentgenol, 2015,205(6):1194-1202. [46] Leng S, Takahashi N, Gomez Cardona D, et al.Subjective and objective heterogeneity scores for differentiating small renal masses using contrast-enhanced CT. Abdominal radiology (New York), 2017,42(5):1485-1492. [47] Sasaguri K, Takahashi N, Gomez-Cardona D, et al.Small (< 4 cm) Renal Mass: Differentiation of Oncocytoma From Renal Cell Carcinoma on Biphasic Contrast-Enhanced CT. AJR Am J Roentgenol, 2015,205(5):999-1007. [48] Raman SP, Chen Y, Schroeder JL, et al.CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Radiol, 2014,21(12):1587-1596. [49] Schieda N, Thornhill RE, Al-Subhi M, et al.Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis. AJR Am J Roentgenol, 2015,204(5):101310-23. [50] Doshi AM, Ream JM, Kierans AS, et al.Use of MRI in Differentiation of Papillary Renal Cell Carcinoma Subtypes: Qualitative and Quantitative Analysis. AJR Am J Roentgenol, 2016,206(3):566-572. [51] Kierans AS, Rusinek H, Lee A, et al.Textural differences in apparent diffusion coefficient between low- and high-stage clear cell renal cell carcinoma. AJR Am J Roentgenol, 2014,203(6):W637-44. [52] Gaing B, Sigmund EE, Huang WC, et al.Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Invest Radiol, 2015,50(3):144. [53] Antunes J, Viswanath S, Rusu M, et al.Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study. Transl Oncol, 2016,9(2):155-162. [54] Gatenby RA, Grove O, Gillies RJ.Quantitative imaging in cancer evolution and ecology. Radiology, 2013,269(1):8-15. [55] Summers RM.Texture analysis in radiology: Does the emperor have no clothes? Abdominal radiology (New York), 2016,1-4. [56] Ganeshan B, Panayiotou E, Burnand K, et al.Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol, 2012,22(4):796-802. [57] Agner SC, Soman S, Libfeld E, et al.Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J Digit Imaging, 2011,24(3):446-463. [58] Karahaliou A, Vassiou K, Arikidis NS, et al.Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. Br J Radiol, 2010, 83(988): 296-309. [59] Avanzo M, Stancanello J, El Naqa I.Beyond imaging: The promise of radiomics. Phys Med, 2017,38(7):122-139. [60] 苏会芳,周国锋,谢传淼,等.放射组学的兴起和研究进展.中华医学杂志,2015,95(7):553-556. [61] Milchenko M, Snyder AZ, Lamontagne P, et al.Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research. Neuroinformatics, 2016,14(3):305-317. [62] Elicker BM, Cypel YS, Weinreb JC.Ⅳ contrast administration for CT: a survey of practices for the screening and prevention of contrast nephropathy. AJR Am J Roentgenol, 2006,186(6):1651. [63] Tarin TV, Sonn GA, Shinghal R.Estimating the risk of cancer associated with imaging-related radiation during surveillance for stage i testicular cancer using computed tomography. J Urol, 2009,181(4):627-633.